Quadratic Forms over Global Fields
نویسنده
چکیده
1. The Hasse Principle(s) For Quadratic Forms Over Global Fields 1 1.1. Reminders on global fields 1 1.2. Statement of the Hasse Principles 2 2. The Hasse Principle Over Q 3 2.1. Preliminary Results: Reciprocity and Approximation 3 2.2. n ≤ 1 6 2.3. n = 2 6 2.4. n = 3 6 2.5. n = 4 8 2.6. n ≥ 5 9 3. The Hasse Principle Over a Global Field 9 3.1. n = 2 10 3.2. n = 3 10 3.3. n = 4 11 3.4. n ≥ 5 12 4. Some Applications to Integral Forms 12 4.1. The Aubry-Davenport-Cassels Lemma 12 4.2. Two, Three and Four Squares 14 4.3. More on Euclidean Forms and ADC Forms 15 References 16
منابع مشابه
Witt rings of quadratically presentable fields
This paper introduces an approach to the axiomatic theory of quadratic forms based on {tmem{presentable}} partially ordered sets, that is partially ordered sets subject to additional conditions which amount to a strong form of local presentability. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of {tmem{quadratically p...
متن کاملDecomposable Quadratic Forms and Involutions
In his book on compositions of quadratic forms, Shapiro asks whether a quadratic form decomposes as a tensor product of quadratic forms when its adjoint involution decomposes as a tensor product of involutions on central simple algebras. We give a positive answer for quadratic forms defined over local or global fields and produce counterexamples over fields of rational fractions in two variable...
متن کاملClassification of Quadratic Forms over Skew Fields of Characteristic 2
Quadratic forms over division algebras over local or global fields of characteristic 2 are classified by an invariant derived from the Clifford algebra construction. Quadratic forms over skew fields were defined by Tits in [14] to investigate twisted forms of orthogonal groups in characteristic 2, and by C.T.C. Wall [16] in a topological context. The purpose of this paper is to obtain a classif...
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملTrace forms of central simple algebras over a local field or a global field
Introduction: Let A be a central simple algebra over a field k of characteristic different from 2. The quadratic form x ∈ A 7→ TrdA(x ) ∈ k is called the trace form of A, and is denoted by TA. This trace form has been studied by many authors (cf.[L], [LM], [Ti] et [Se], Annexe §5 for example). In particular, these classical invariants are well-known (loc.cit.). In [B], we have determined a diag...
متن کامل